Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 26(3): e16588, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450576

RESUMO

Dengue represents an increasing public health burden worldwide. In Africa, underreporting and misdiagnosis often mask its true epidemiology, and dengue is likely to be both more widespread than reported data suggest and increasing in incidence and distribution. Wolbachia-based dengue control is underway in Asia and the Americas but has not to date been deployed in Africa. Due to the genetic heterogeneity of African Aedes aegypti populations and the complexity of the host-symbiont interactions, characterization of key parameters of Wolbachia-carrying mosquitoes is paramount for determining the potential of the system as a control tool for dengue in Africa. The wAlbB Wolbachia strain was stably introduced into an African Ae. aegypti population by introgression, and showed high intracellular density in whole bodies and different mosquito tissues; high intracellular density was also maintained following larval rearing at high temperatures. No effect on the adult lifespan induced by Wolbachia presence was detected. Moreover, the ability of this strain to strongly inhibit DENV-2 dissemination and transmission in the host was also demonstrated in the African background. Our findings suggest the potential of harnessing Wolbachia for dengue control for African populations of Ae. aegypti.


Assuntos
Aedes , Dengue , Wolbachia , Animais , Burkina Faso/epidemiologia , Wolbachia/genética , Ásia , Dengue/prevenção & controle
2.
Science ; 381(6657): 533-540, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37535741

RESUMO

Malaria control demands the development of a wide range of complementary strategies. We describe the properties of a naturally occurring, non-genetically modified symbiotic bacterium, Delftia tsuruhatensis TC1, which was isolated from mosquitoes incapable of sustaining the development of Plasmodium falciparum parasites. D. tsuruhatensis TC1 inhibits early stages of Plasmodium development and subsequent transmission by the Anopheles mosquito through secretion of a small-molecule inhibitor. We have identified this inhibitor to be the hydrophobic molecule harmane. We also found that, on mosquito contact, harmane penetrates the cuticle, inhibiting Plasmodium development. D. tsuruhatensis TC1 stably populates the mosquito gut, does not impose a fitness cost on the mosquito, and inhibits Plasmodium development for the mosquito's life. Contained field studies in Burkina Faso and modeling showed that D. tsuruhatensis TC1 has the potential to complement mosquito-targeted malaria transmission control.


Assuntos
Anopheles , Delftia , Interações Hospedeiro-Parasita , Malária Falciparum , Plasmodium falciparum , Animais , Anopheles/microbiologia , Malária Falciparum/microbiologia , Malária Falciparum/prevenção & controle , Malária Falciparum/transmissão , Plasmodium falciparum/microbiologia , Plasmodium falciparum/fisiologia , Delftia/fisiologia , Simbiose , Humanos
3.
Malar J ; 22(1): 122, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055834

RESUMO

BACKGROUND: Vector control tools are urgently needed to control malaria transmission in Africa. A native strain of Chromobacterium sp. from Burkina Faso was recently isolated and preliminarily named Chromobacterium anophelis sp. nov. IRSSSOUMB001. In bioassays, this bacterium showed a promising virulence against adult mosquitoes and reduces their blood feeding propensity and fecundity. The current study assessed the entomopathogenic effects of C. anophelis IRSSSOUMB001 on larval stages of mosquitoes, as well as its impacts on infected mosquitoes reproductive capacity and trans-generational effects. METHODS: Virulence on larvae and interference with insemination were assayed by co-incubation with C. anophelis IRSSSOUMB001 at a range of 104 to 108 cfu/ml. Trans-generational effects were determined by measuring body size differences of progeny from infected vs. uninfected parent mosquitoes using wing size as a proxy. RESULTS: Chromobacterium anophelis IRSSSOUMB001 killed larvae of the pyrethroid-resistant Anopheles coluzzii with LT80 of ~ 1.75 ± 0.14 days at 108 cfu/ml in larval breeding trays. Reproductive success was reduced as a measure of insemination rate from 95 ± 1.99% to 21 ± 3.76% for the infected females. There was a difference in wing sizes between control and infected mosquito offsprings from 2.55 ± 0.17 mm to 2.1 ± 0.21 mm in infected females, and from 2.43 ± 0.13 mm to 1.99 ± 0.15 mm in infected males. CONCLUSIONS: This study showed that C. anophelis IRSSSOUMB001 was highly virulent against larvae of insecticide-resistant Anopheles coluzzii, and reduced both mosquito reproduction capacity and offspring fitness. Additional laboratory, field, safety and social acceptance studies are needed to draw firm conclusions about the practical utility of this bacterial strain for malaria vector control.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Masculino , Feminino , Larva , Chromobacterium , Malária/prevenção & controle , Mosquitos Vetores , Inseticidas/farmacologia , Burkina Faso , Reprodução , Controle de Mosquitos
4.
Microbiol Resour Announc ; 11(10): e0052422, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36121217

RESUMO

Chromobacterium sp. strain IRSSSOUMB001 with potent insecticidal activity was isolated from Anopheles gambiae s.l. in Burkina Faso. The draft genome is 5,090,822 bp and encodes predicted genes for hydrogen cyanide production, haemolysin, a T3SS, and yopE, which are potential virulence factors against mosquitoes.

5.
Malar J ; 19(1): 352, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33008454

RESUMO

BACKGROUND: This is now a concern that malaria eradication will not be achieved without the introduction of novel control tools. Microbiological control might be able to make a greater contribution to vector control in the future. The interactions between bacteria and mosquito make mosquito microbiota really promising from a disease control perspective. Here, the impact of Chromobacterium violaceum infections, isolated from both larvae and adult of wild-caught Anopheles gambiae sensu lato mosquitoes in Burkina Faso, was evaluated on mosquito survival, blood feeding and fecundity. METHODS: To assess entomopathogenic effects of C. violaceum infection on mosquitoes, three different types of bioassays were performed in laboratory. These bioassays aimed to evaluate the impact of C. violaceum infection on mosquito survival, blood feeding and fecundity, respectively. During bioassays mosquitoes were infected through the well-established system of cotton ball soaked with 6% glucose containing C. violaceum. RESULTS: Chromobacterium violaceum kills pyrethroid resistant Anopheles coluzzii (LT80 of 8.78 days ± 0.18 at 108 bacteria cell/ml of sugar meal). Interestingly, this bacterium had other negative effects on mosquito lifespan by significantly reducing (~ 59%, P < 0.001) the mosquito feeding willingness from day 4-post infection (~ 81% would seek a host to blood feed) to 9- day post infection (22 ± 4.62% would seek a host to blood feed). Moreover, C. violaceum considerably jeopardized the egg laying (~ 16 eggs laid/mosquito with C. violaceum infected mosquitoes vs ~ 129 eggs laid/mosquito with control mosquitoes) and hatching of mosquitoes (a reduction of ~ 22% of hatching rate with C. violaceum infected mosquitoes). Compared to the bacterial uninfected mosquitoes, mosquitoes infected with C. violaceum showed significantly higher retention rates of immature eggs and follicles. CONCLUSION: These data showed important properties of Burkina Faso C. violaceum strains, which are highly virulent against insecticide-resistant An. coluzzii, and reduce both mosquito blood feeding and fecundity propensities. However, additional studies as the sequencing of C. violaceum genome and the potential toxins secreted will provide useful information render it a potential candidate for the biological control strategies of malaria and other disease vectors.


Assuntos
Anopheles/microbiologia , Anopheles/fisiologia , Chromobacterium/fisiologia , Controle de Mosquitos/métodos , Mosquitos Vetores/microbiologia , Mosquitos Vetores/fisiologia , Animais , Anopheles/crescimento & desenvolvimento , Burkina Faso , Comportamento Alimentar , Feminino , Fertilidade , Resistência a Inseticidas , Larva/crescimento & desenvolvimento , Larva/microbiologia , Longevidade , Malária , Controle de Mosquitos/estatística & dados numéricos , Mosquitos Vetores/crescimento & desenvolvimento
6.
Science ; 364(6443): 894-897, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31147521

RESUMO

Malaria control efforts require implementation of new technologies that manage insecticide resistance. Metarhizium pingshaense provides an effective, mosquito-specific delivery system for potent insect-selective toxins. A semifield trial in a MosquitoSphere (a contained, near-natural environment) in Soumousso, a region of Burkina Faso where malaria is endemic, confirmed that the expression of an insect-specific toxin (Hybrid) increased fungal lethality and the likelihood that insecticide-resistant mosquitoes would be eliminated from a site. Also, as Hybrid-expressing M. pingshaense is effective at very low spore doses, its efficacy lasted longer than that of the unmodified Metarhizium Deployment of transgenic Metarhizium against mosquitoes could (subject to appropriate registration) be rapid, with products that could synergistically integrate with existing chemical control strategies to avert insecticide resistance.


Assuntos
Culicidae/microbiologia , Malária/prevenção & controle , Metarhizium/genética , Controle de Mosquitos/métodos , Venenos de Aranha/genética , Animais , Animais Geneticamente Modificados/genética , Burkina Faso/epidemiologia , Resistência a Inseticidas , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...